

A Unique CRISPR-Based Nuclease with a Non-NGG PAM Efficiently Targets Multiple Exclusive Genomic Sites for Immuno-Oncology Based Therapy

INTRODUCTION

Chimeric antigen receptor (CAR)-T cell therapy is a recent clinically successful approach to tackling cancer, in which T cells are genetically modified to allow specific recognition and efficient killing of cancer cells via tumor associated antigens¹. Current CAR-based treatments require costly and time-consuming autologous cell transfer. Patients' own cells are frequently of low quality and difficult to obtain, further supporting the advantage of an allogeneic transplantation. To prevent graft versus host reactions and avoid host-mediated rejection of healthy donor-derived allogeneic cells, these cells must be adjusted by eliminating the expression of endogenous recognition components, such as T cell receptor alpha constant (TRAC or TCR) and CD3, and of HLA class I molecules such as β -2 microglobulin (B2M)^{2,3}. In this study, we tested the feasibility of gene editing in allogeneic cells using our novel high-fidelity CRISPRassociated nuclease OMNIA4. OMNIA4 is a highly active nuclease with a unique non-NGG PAM recognition domain. The unique PAM allows gene-editing in exclusive genomic sequences that are not accessible by commonly used nucleases. Our strategy involves disrupting endogenous T cell recognition elements as well as checkpoint receptors and exhaustion genes that restrict anti-tumor T cell response. RNA guides (gRNAs) were designed for several of such genes of interest and their editing via OMNIA4 nuclease was evaluated by NGS in HeLa cells. Ribonucleoproteins (RNPs), including OMNIA4 and gRNAs designed to target distinctive sites in either TRAC, CD3e or B2M genes, were applied to primary T cells. The resulting editing outcome was evaluated by measuring T cell receptor (TCR), CD3e or B2M surface expression by flow cytometry. In addition, an unbiased analysis was performed to identify 'offtargets' edited by the nuclease. Our gRNA screening yielded at least one (and up to five) active gRNA for each gene of interest, with editing level >70%. Flow cytometric analysis showed that editing in primary T cells resulted in about 94% TCR negative cells, about 85% CD3e negative cells and about 95% B2M negative cells. An unbiased assay revealed no off-targets for neither of the guides. These findings demonstrate efficient, accurate and safe impairment of a self-presenting element and endogenous T cell recognition components. Our approach offers gene editing at unique targets as a tool to generate universal allogeneic T cells that could be employed in the development of 'off-the-shelf' 'ready-to-use' CAR-T therapeutic agents for large-scale clinical applications.

METHODS

T cells from one donor were thawed and activated by T Cell Activation/ Expansion Kit (cat:130-091-441) according to manufacturer instructions. Then, a cleavage activity assay was done with OMNIA4 + sgRNA. After 7 days cells were analyzed by flow cytometry and the rest of the samples were used for editing analysis by NGS.

OMNIA4

							sequences			mul	tinle	nrelated enti	tier
OMNIA4						TRAC	56	0/20	15	• 4 n	unmet	need for a n	ucle
Protein Length $(\Lambda\Lambda)$ 1349	(161 9 KDa)	2				TRBC1	23	1/20	3	NG	G PAN	I recognition	1 do
		Ø,				TRBC2	23	1/21	5	• The		e PAM allov	vs o
gRNA length (nt) 107+2	22=129	<u>1</u> -			-	CD3e	4	10/79	18	gen	omic t	argets.	55
PAM (TXTL results) NNRA	СТ	0_			2	B2M	42	0/33	12	U		0	
		• -	N 0	4 ú O	~ 8	CIITA	9	0/294	35				
						PD1 (PDCD1)	51	0/196	29				
						TET2	6	8/638	288				
						F	RESULTS						_
		B2M	[<u>.</u>				TRAC			
• B2M is a component of	of MHC class I 1	molecules	L				· TRAC	is a constant re	gion of the T cel	l receptor (T	R) alp	ha chain	
• KO of B2M aims at pr	eventing an imp	nune respo	nse froi	n cytotoxic	CD8+ T cell	S	• TRAC	KO aims at elir	ninating graft-ve	ersus-host di	sease (GVHD)	
1		% Editing		% Editing						% Editing		% Editing	
	Sample Name	FACS	GM	NGS	ר100				Sample Name	FACS	GM	NGS	
					US 80-								C,
		047	001	55.0	Ű Z					04.0	500	0.0 (ů N
	Edited	94./	921	55.2	<u>}</u> 60−			<u> </u>	Edited	94.3	529	89.6	h v
					-04 ting								ting
	NT	0.45	56200	0.01	Edi			\mathcal{A}	NT	5.44	5832	0.02	ЕQ
<u> </u>					≈ 20 -								%
		00.0	245		0		_			100	220		
0 10 ⁴ 10 ⁵ 10 ⁶		77.7	243			NT Edited		10 ⁴ 10 ⁵ 10 ⁶ 1		100	550		
B2M (APC)								TCR (PB-450)	-				
B2M_KO	: 95% editing (H	FACS) and a	55% ed	iting (NGS)	after 7 days			TRAC_KO	: 94% editing (FA	ACS) and 90	% edit	ting (NGS) a	fter
		CD3	e				\backslash			TIM3			
• CD3e codes to a polyp	peptide, which is	s part of the	e T-cell	receptor-CE	03 complex		• TIM3 e	expression, espe	ecially in conjune	ction with Pl	DCD1	(PD-1), indu	ces
• This complex plays an	important role	in coupling	antige	n recognitio	n to intracell	lular signal-	cell sta	te					
transduction pathways		% Editing		% Editing						% TIM3		% Editing	
	Sample Name	FACS	GM	NGS	⁸⁰ 7				Sample Name	Positive	GM	NGS	
					S C								S
	Edited	84.5	912	70.3	N N				Edited	2.02	258	93.6	Ž
					(q b 40-								a þ
					litin				NT	10 ((00	0.04	litin
	NT	1.41	9449	0.03	р 20-			and the second s	IN I	19.6	689	0.04	С Ц С
					~								~
	REA	100	354		0		- 🔼		REA	0.43	201		
0 10 ⁴ 10 ⁵ 10 ⁶	10 ⁷		1	<u> </u>		IN I Edited		10^4 10^5 10^6 1 FIM3 (DE 770)	^{o⁷} * Editing analysis by	FACS is presented	after norm	alization to NT cells	•
CD3 (PP 450)								TIM3 (PE-770)					

CD3 (PB-450)

Bar Ben Baruch, Yonit Ben David, Sigal Cohen, Maya Noff, Nir Shahar, Ira Gotliv, Rafi Emmanuel, Lior Izhar

Emendo Biotherapeutics

		# of patent families directed to guide sequences	# of NGG guides left after patent screen	# of guides for non-NGG nuclease OMNIA4	• Commonly used n compatible guide multiple unrelated
	TRAC	56	0/20	15	 An unmet need for
2	TRBC1	23	1/20	3	NGG PAM recog
Ø	TRBC2	23	1/21	5	• The unique PAM
	CD3e	4	10/79	18	genomic targets.
	B2M	42	0/33	12	6 6
, F 0 0 4 0 0 6 0	CIITA	9	0/294	35	
	PD1 (PDCD1)	51	0/196	29	
	TET2	6	8/638	288	

CD3e KO: 85% editing (FACS) and 70% editing (NGS) after 7 days

emendo

NEXT GENERATION CRISPR ANY GENE **TARGETABLE**

