

Challenges and Inconsistencies in Type II CRISPR-Associated Nuclease Subtype Classification emendo de la comenta de la com

Ariel Gispan, Nurit Meron, Idit Buch, Anat London Drori, Rachel Diamant

EmendoBio

INTRODUCTION

CRISPR-associated nucleases were first found and classified as a component of the bacterial immune defense system, designed to combat foreign DNA^{1,2}. The discovery of SpCas9, and its repurpose as a genome editing tool led the path for the discovery of additional distinct nucleases with diverse properties that are employed in a variety of applications. Initial categorization of CRISPR-related nucleases was based on a narrow pool of nucleases from limited origins and could not anticipate the heterogeneity of nucleases that is known today. The current subtype classification is based on several methodologies^{3,4}, however, no differential weight was assigned to each classification method, and in several cases, the discrepancy between the methods resulted in subjective and/or arbitrary classifications. In the current study we employed three different commonly used classification methods of type II nucleases, namely: Loci architecture, Cas9 phylogeny and Cas1 phylogeny for analysis of a large-scale nuclease database. For each classification method, the distribution of nucleases by subtype was studied and the agreement between the methods was measured. HMM profiles of the HNH motif were built iteratively and the matching of the nucleases to each profile was determined. Finally, the relationship between subtype classification, HNH profile and nuclease function was also investigated. Out of the 9520 nucleases analyzed, about 30% were inconsistently classified. A similarity matrix revealed a diverse correlation between the methods used. In some cases, the nucleases did not fit with any of the established subtype classifications and showed a novel and unique loci architecture pattern. Nucleases of the same subtype showed preference to diverse HNH profiles. Some nucleases of the same subtype classification and the same HNH profile showed diverse activity in mammalian cells. Overall, these findings demonstrate the challenges in CRISPR-associated nuclease classification. They also question the present paradigm of affiliating nucleases into distinct allegedly homogenous groups with shared properties and functions. Accordingly, we propose that newly discovered and/or engineered nucleases should be carefully characterized prior to being confined with existing classifications.

METHODS

Data Collection

Bacterial assembled samples were downloaded from Mgnify⁵ and JGI^{6,7}. CRISPRCasFinder⁸ was used to detect CRISPRs and CAS genes. Proteins within 3Kb of the CRISPR array, larger than 800 amino acids with RuvC and HNH domains (HHsuite hhalign⁹) were selected, resulting in 9520 nuclease containing

Loci Architecture Analysis

A list of known type-II subtype gene patterns (including order and direction) was constructed. Prodigal¹⁰ was used to predict protein ORF. Each protein was compared to a set of CRISPR gene profiles from CRISPRCasTyper¹¹. New patterns and genes were added to the pattern list and the profiles set, respectively, resulting in the mapping of each contig to a specific loci architecture pattern.

Phylogenetic trees for both Cas9 annotated protein sequences⁴ and Cas1 sequences were constructed, one tree per known subtype. A database of HMM profiles was created using HHsuite, one profile per clade. Each protein was compared to this database and assigned to the nearest clade, resulting in a new annotation and a score based on the distance to the nearest clade, as calculated by Makarova et al.⁴

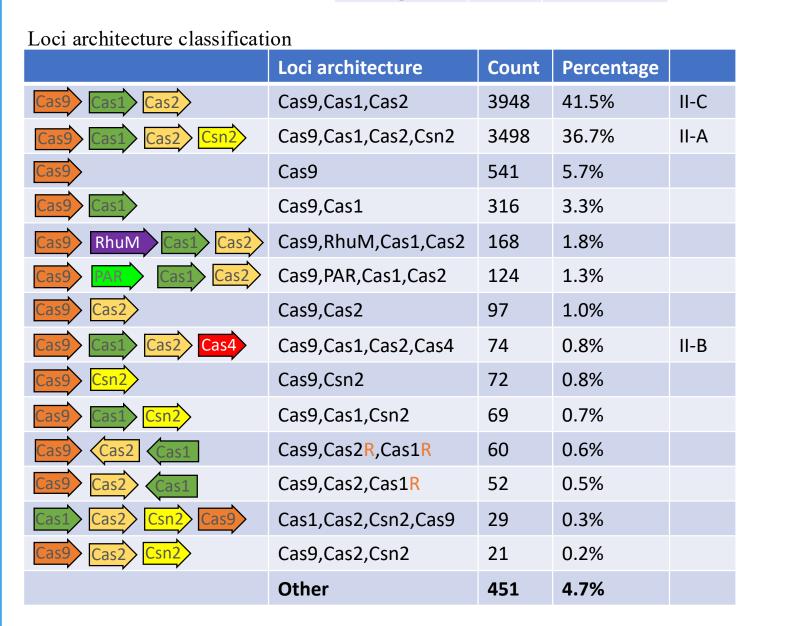
HNH Analysis

Multiple sequence alignment was performed on a sample of 150 nuclease sequences with muscle¹². The sub-sequence aligned to the SpCas9 HNH conserved domain (positions 837 – 864) was extracted for each sequence. Then, domain clusters were generated with K-means algorithm, using the HMM profile (HHsuite) as group centroid. The value of K=8 was selected with the elbow method, over the mean match score of all the sequences.

In vitro depletion assay by TXTL

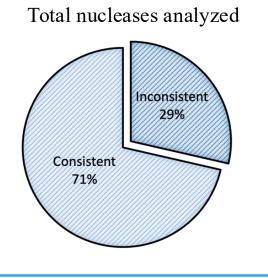
Depletion of PAM sequences *in vitro* was followed as described by Maxwell *et al.*¹³

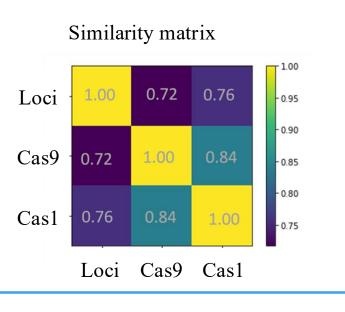
Activity in human cells on endogenous genomic targets:


Nucleases (NUCs) were assayed for their ability to edit specific genomic locations in human cells. To this end, each nuclease was transfected into HeLa cells together with sgRNA designed to target specific location in the human genome. NGS analysis was used to calculate the percentage of editing events in each target site.

RESULTS

Nuclease distribution is different for each subtype classification method


Cas9 phylogenetic classification Subtype Count Percentage 3651 38.3% 123 1.3% 5746 60.4%


Cas1 phylogenetic classification | Count | Percentage 4001 42.0% 106 1.1% 4655 48.9% Missing Cas 1 758 8.0%

- In some cases, the nucleases did not fit with any of the established subtype classifications and showed novel loci architecture patterns.
- Some loci architecture patterns included genes that have not been previously reported in the context of CRISPR operon, such as RhuM and PAR.

Inconsistencies in subtype classification

Subtype	Count	Percenta	ly classified ge						
II-A	2966	43.6%							
II-B	74	1.1%		<u> </u>					
II-C	3759	55.3%		Consiste	nt 7				
total	6799	100%		71%					
Inconsi 29%	Leading p	atterns of in		as9	Cas1	ation	by the tl		met
			c	lassificat	ion classif	ication			
Cas9 Cas1 Cas2	Csn2 Ca	s9,Cas1,Cas2,	Csn2 (II-A)	-C	II-A		528	19.	4%
Cas9 Cas1	Ca	s9,Cas1	II-	-C	II-C		228	8.4	%
Cas9 RhuM Cas1 Cas2		Cas9,RhuM,Cas1,Cas2		-C	II-C	II-C		6.2%	
Cas9 Cas1 Cas2		Cas9,Cas1,Cas2 (II-C)		-C	II-A	II-A		5.3	%
Cas9 PAR Cas1	Cas2 Ca	s9,Par,Cas1,Ca	as2 II	-C	II-C		124	4.6	5%
Cas9 Cas2 Cas1	Ca	s9,Cas2R,Cas1	LR II	-C	II-C		60	2.2	.%
Cas9 Cas1 Csn2	Ca	s9,Cas1,Csn2	II-	-A	II-A		59	2.2	.%
Cas9 Cas2 Cas1	Ca	s9,Cas2,Cas1F	R II	-C	II-C		52	1.9	%
Cas9 Cas1 Cas2	Ca	s9,Cas1,Cas2	(II-C)	-A	II-A		39	1.4	.%
Cas9 Cas1	Ca	s9,Cas1	II.	-C	II-A		37	1.4	.%
Cas9 Cas1	Ca	s9,Cas1	II.	-A	II-A		29	1.1	.%
Cas1 Cas2 Csn2	Cas9 Ca	s1,Cas2,Csn2,	Cas9 II	-C	II-A		22	0.8	3%
			othe	er			1231	45.	.2%
	То	tal					2721	10	0%
Examples of inco	onsistently	classified	nucleases						
accession #		hitecture	ilacicas es	Cas1 c	lassificatio	n Ca	s9 classit	ficatio	n
VP_009293010.1	Cas9	RhuM Cas1	Cas2	II-C		11-0	C		
CD99347.1	Cas9	Cas1		II-C		11-0	C		
VP_007837560.1	Cas9	RhuM Cas1	Cas2	II-C		11-0	C		
VP_012962169.1	Cas9	Cas1 Cas2	Csn2 (II-A)	II-A		11-0	2		
VP_013073784.1		Cas1 None	Cas2	II-C		II-C	2		
VP_005791619.1		RhuM Cas1	Cas2	II-C		11-0	2		
VP_003065552.1	Cas9	Cas1 Cas1	Cas2	II-A		II-A	4		
VP_013362995.1	Cas9	Cas1 Csn2		II-A		II-A	4		
VP 013852048.1	Cas9	Cas1 Cas2	Csn2 (II-A)	II-A		II-C			
VI _0130320+0:1	Cas9	PAR Cas1	Cas2	II-C		II-C	C		
_				1	ses				
_ VP_004292911.1	l-known ii	nconsistent ¹	v classified	nucles					
VP_004292911.1 xamples of wel			ly classified ci architecture	I	Loci	Cas1		Cas9	
VP_004292911.1 Examples of well Sample		Lo		[Cas1	Cas1 distance 0.52	Cas9	Cas dist

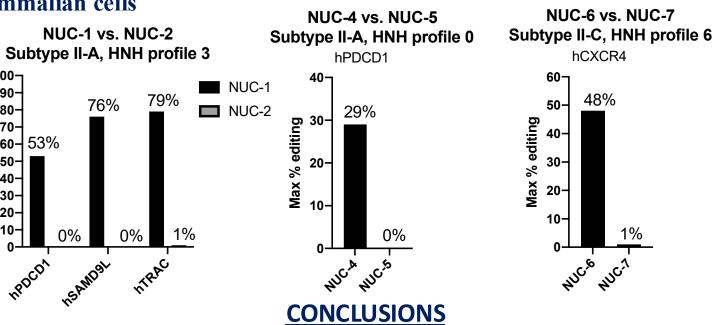
Cas9 Cas2 Csn2 II-A

II-A 0.49 II-C 0.72

Streptococcus

thermophilus_LMD-9 thermophilus (short)

Streptococcus


- About 30% of the nucleases analyzed were inconsistently classified by the three subtype classification methods.
- A similarity matrix revealed a diverse correlation between the methods used.

Nucleases of the same subtype show diverse HNH profiles

HNH profile analysis per subtype in consistently classified nucleases

Profile	Subtype II-A	Subtype II-B	Subtype II-C
Cluster_0	941 (31.7%)	0	1 (0.03%)
Cluster_1	0	0	276 (7.3%)
Cluster_2	0	74 (100%)	122 (3.2%)
Cluster_3	1024 (34.5%)	0	1 (0.03%)
Cluster_4	0	0	1791 (47.6%)
Cluster_5	316 (10.7%)	0	1 (0.03%)
Cluster_6	45 (1.5%)	0	1154 (30.7%)
Cluster_7	624 (21%)	0	0
None	16 (0.5%)	0	413 (11%)

Nucleases of the same subtype and HNH profile show different activity in mammalian cells

- Our findings demonstrate the challenges in type-II CRISPR-associated nuclease subtype
- They also question the present paradigm of affiliating nucleases into distinct homogenous groups with allegedly shared properties and functions.
- Predictability of nuclease activity in mammalian cells is currently very limited and could not be anticipated based on current classifications
- Accordingly, we propose that newly discovered and/or engineered nucleases should be carefully characterized prior to being confined with existing classifications.

REFERENCES

2. Mojica, F.J.M., et al. (2000). Mol. Microbiol. 3. Makarova, K.S., et al., (2015). Nat. Rev. Microbiol.

4. Makarova, K.S., et al. (2020). Nat. Rev. Microbiol.

5. Mitchell, A.L., et al. (2020). Nucleic Acids Res. 6. Chen, I.-M.A., et al. (2021). Nucleic Acids Res.

. Barrangou, R., et al. (2007). Science.

7. Mukherjee, S., et al. (2021). Nucleic Acids Res. 8. CRISPR-CAS++ https://crisprcas.i2bc.paris-saclay.fr/. 9. Steinegger, M., et al. (2019). BMC Bioinformatics

10. Hyatt, D., et al. (2010). BMC Bioinformatics. 11. Russel, J., et al. (2020). CRISPR J.

3. Maxwell, C.S., et al. (2018). Methods.

12. Edgar, R.C. et al. (2004). Nucleic Acids Res.