

About EmendoBio

- Founded in U.S. in 2016 by scientists from the Weizmann Institute, Israel
- Founding investors: OrbiMed and Takeda Ventures
- AnGes became a majority shareholder in December 2020

Management

Naoya Satoh, PhD

President & CEO

Ei Yamada, PhD

AnGes

Assaf Sarid

CFO

Naoya Satoh, PhD

AnGes

Idit Buch, PhD

VP, Computational Biology

Ella Segal

VP, Research and **Analytical Sciences**

Board of Directors

David C. Dale, MD Former Dean **UW Medical School**

Stephen Tsang, MD

Clinical Geneticist Columbia University

Harry Malech, MD

Chief Genetic Immunotherapy, NIH

David Rawlings, MD

Director Immunity and Immunotherapies, SCRI

Andrew Kung, MD PhD

Chair Dept. Peds. Sloan Kettering

Memorial Sloan Kettering Cancer Center.

Current Limitations of Gene Editing

Safety

- Off-target effects
- **Translocations**

Editing Strategy

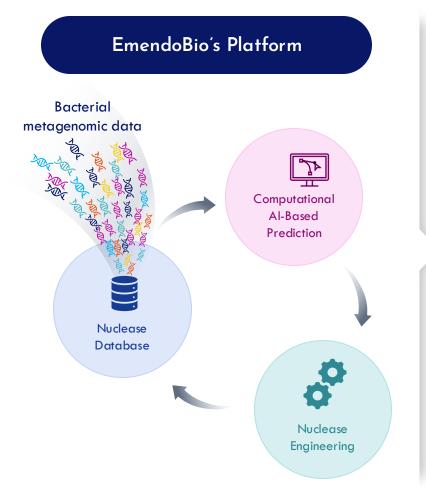
- PAM availability
- Allele specific editing
 - Mutations
 - **SNPs**
 - **Enhancer sites**
 - Splice donor / acceptor

Delivery

- Packaging limitations
- Tissue specificity

Immunogenicity

- Anti-nuclease antibodies
- Cytotoxic T cells


IP

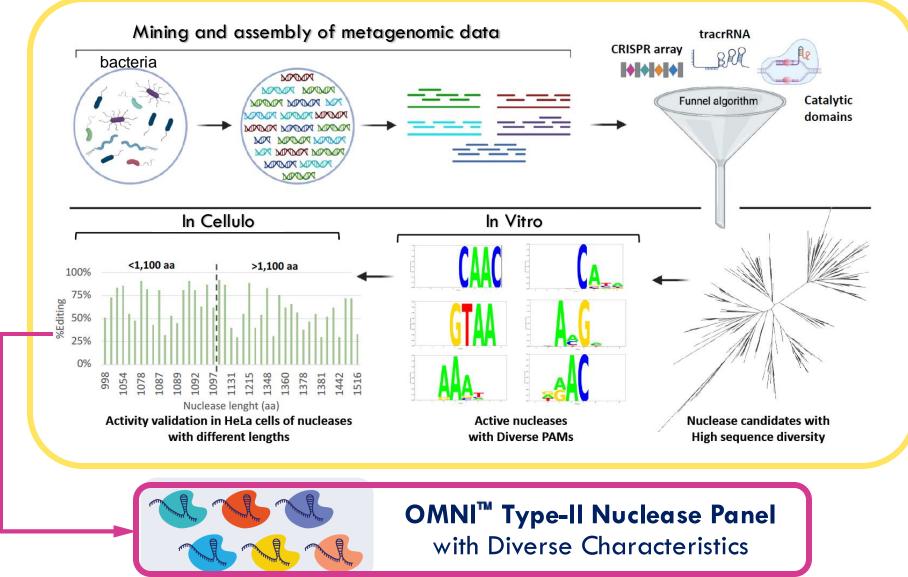
- Nuclease
- Guide RNA (gRNA)

OMNITM Platform Offers a Variety of Gene-Editing Solutions

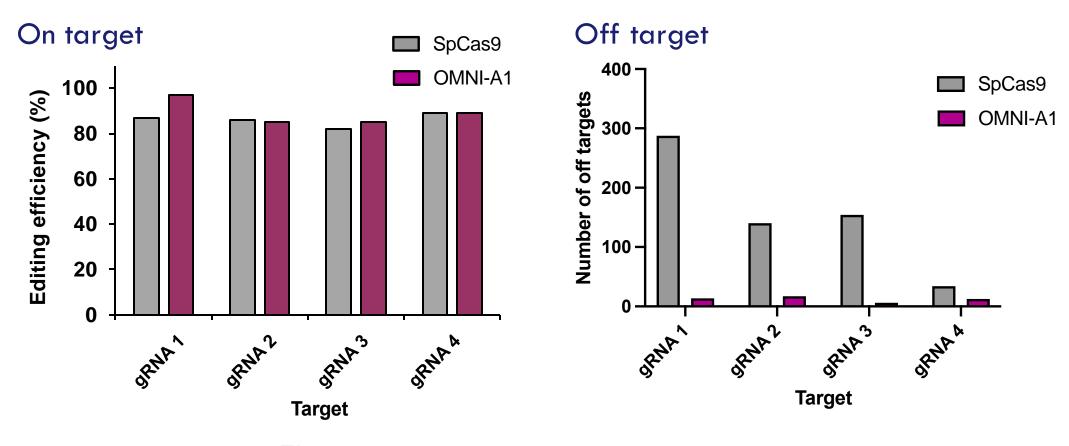
Synergistic discovery, engineering and computational technologies combine to produce a portfolio of high-performance OMNI™ type-II nucleases

Panel of Engineered OMNI™ Nucleases

- Novel
- Highly active
- Highly specific


Optimal Therapeutic Compositions per target

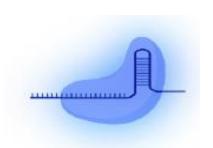
- High safety profile
- Expanded range of applications
- Freedom to operate


Nuclease Discovery

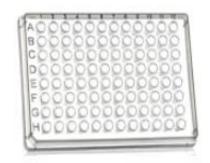
Activity and Specificity of OMNI-A1TM (1,370aa)

OMNI-A1[™] vs SpCas9

OMNI-A1[™] has higher specificity compared to SpCas9

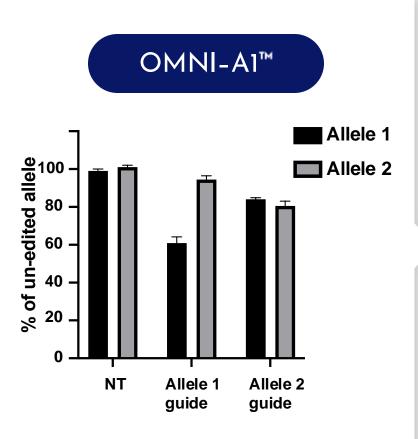


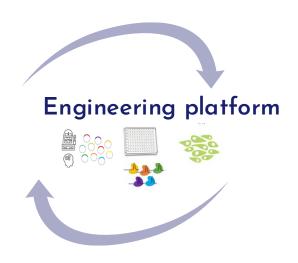
Nuclease Engineering Platform

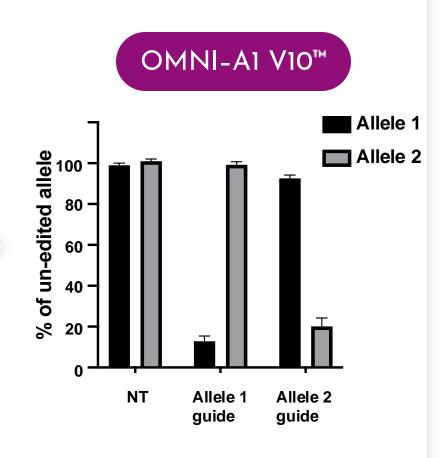

OMNI™ nuclease (from panel)


Al based engineering for variant library generation Libraries of nuclease variants

Screening in mammalian cell line

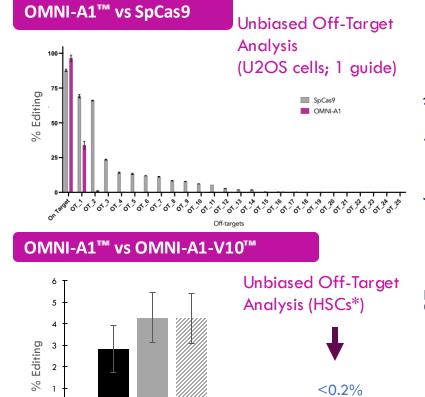



Highly Active and Specific **Optimized OMNI™ Variants**

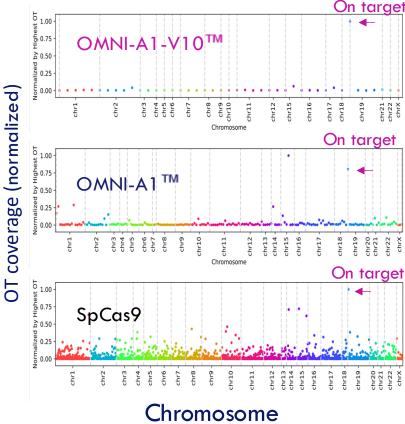


Increased Specificity

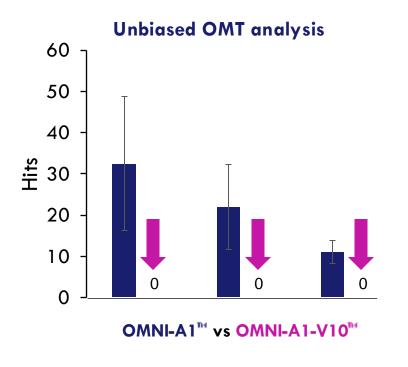
OMNI-A1TM – powerful engineering platform



Non-Compromised Nuclease Safety


Engineering platform achieves systematic elimination of off-targets

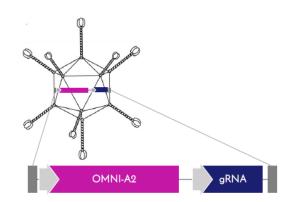
Optimized to be highly active and specific



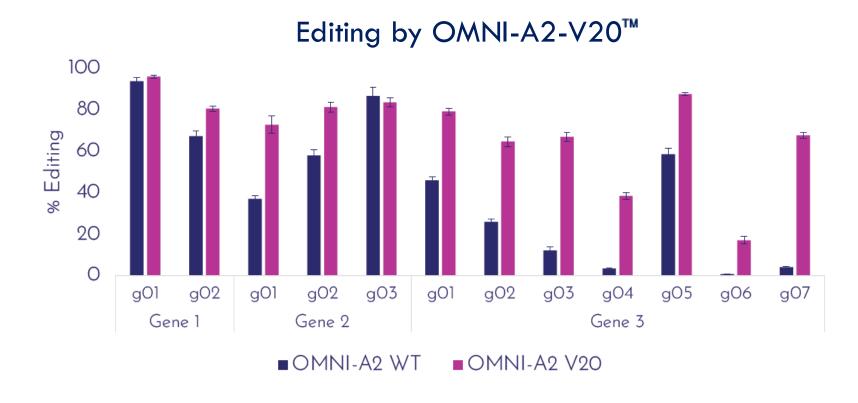
■ OT1 ■ OT2

Engineering further eliminates off-targets

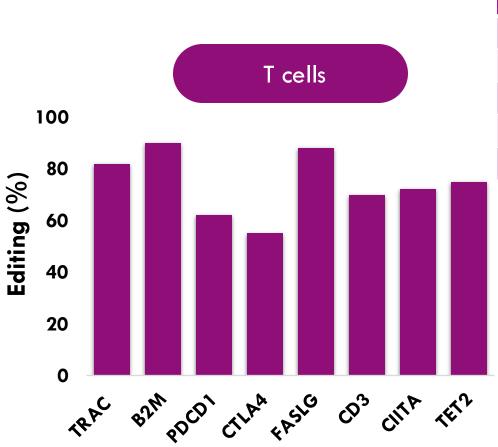
Limits potential for off-target mediated translocations (OMTs)

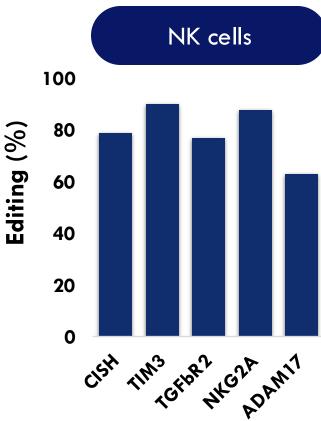

OMNIA1

OMNIA1 V10


OMNI-A2TM (1,050aa): Short AAV-Deliverable Nuclease

Short, highly active, AAV packaging compatible nucleases available


Limited payload capacity



OMNI-A4TM Presents High Activity and Specificity Profile

Non-NGG PAM nuclease compositions for major cell therapy and immuno-oncology targets

OMNI-A4 TM			
CRISPR type	II-A		
Protein length	1,348 aa (161.9 Kda)		
gRNA length	101 nt		
PAM	NNRACT		
hg38 coverage	0.77%		

A Portfolio of "Off-the-Shelf" Editing Solutions

SAFE HARBOR

#	Target Gene	Computational	Cell Line	Target Cells
1	AAVS1	•	•	
2	ROSA26	•	•	
3	C3	•	•	
4	APLP2	•	•	•

HEMATOPOETIC STEM CELLS

#	Target Gene	Disease	Computational	Cell Line	Target Cells
5	ELANE	Severe Congenital Neutropenia	•	•	•
6	SAMD9L	Myeloid malignancies	•	•	
7	GATA2	Myeloid malignancies	•	•	
8	SAMD9	Myeloid malignancies	•	•	
9	RPS19	Diamond Blackfan Anemia	•	•	

IMMUNO-ONCOLOGY

#	Target Gene	Computational	Cell Line	Target Cells
10	PDCD1	•	•	•
11	TRAC	•	•	•
12	TRBC1	•	•	•
13	TRBC2	•	•	•
14	B2M	•	•	•
15	CTLA4	•	•	•
16	TET 2	•	•	•
1 <i>7</i>	CD3E	•	•	•
18	LAG3	•	•	•
19	FAS	•	•	•
20	HAVCR2 (TIM3)	•	•	•
21	HLAE	•	•	•
22	CIITA	•	•	•
23	FASLG	•	•	•
24	IL15	•	•	•
25	TIGIT	•	•	•
26	CISH	•	•	•

A Portfolio of "Off-the-Shelf" Editing Solutions

#	Target Gene	Disease	Computational	Cell Line	Target Cells
27	SERPINA1	A1AD	•	•	•
28	ANGPTL3	Dyslipidemia including homozygous familial hypercholesterolemia	•	•	•
29	LDLR	Atherosclerotic cardiovascular disease	•	•	•
30	HBV	Hepatitis	•	•	

#	Target Gene	Disease	Computational	Cell Line	Target Cells
31	LRRK2	Parkinson's disease	•	•	

OPHTHALMOLOGY

#	Target Gene	Disease	Computational	Cell Line	Target Cells
32	TCF4	Fuchs Endothelial Corneal Dystrophy	•	•	
33	TGFBi	Comeal Dystrophies	•	•	
34	SARM1	Neuronal and macular degeneration	•	•	
35	RPE65	Retinitis Pigmentosa	•	•	
36	RHO	Retinitis Pigmentosa	•	•	
37	FLG	Ichthyosis vulgaris	•	•	
38	BEST1	Autosomal dominant vitreoretinochoroidopathy	•	•	
39	PRPH2	Retinitis Pigmentosa	•	•	

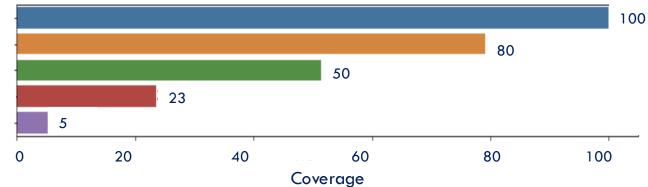
OMNITM Panel Genome Accessibility

Nuclease Portfolio

10,000 discovered nucleases

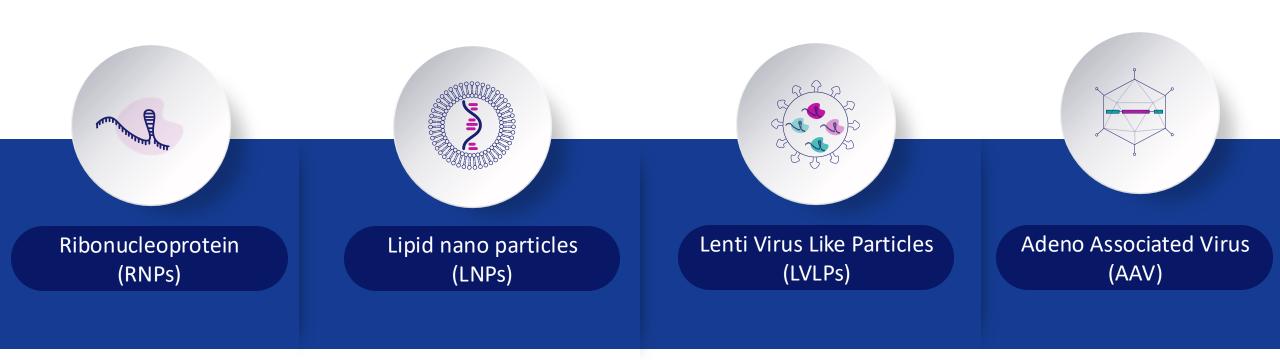
300 validated in vitro

80 shown active in cells


12 characterized

2 engineered

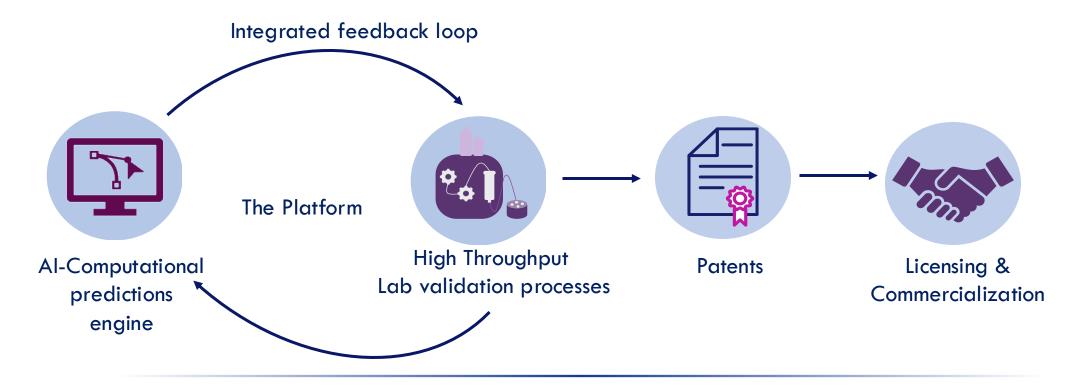
OMNI[™] Genomic PAM Coverage



The diversity of PAM sites of the OMNI™ nucleases overcomes PAM constraints and significantly widens genome accessibility, making any gene targetable

OMNITM-Generated Nucleases

Compatible with all commonly used delivery platforms


Extensive Intellectual Property Portfolio

- Strong IP position 191 patents/applications worldwide
- Coverage extending to 2041
- Gene Editing Techniques
- Compositions for gene editing
 - Knock-out and knock-in compositions
 - Allele-specific compositions
 - Numerous target genes & indications
- Novel CRISPR nucleases
 - OMNI™ Panel Nucleases
 - High-fidelity variants
 - Variants with increased activity, specificity

EmendoBio's Business Model

Collaboration Work Plan

Upon transfer of gene sequence:

- EmendoBio assesses licensee needs and optimizes OMNITM nuclease
- EmendoBio provides nuclease and recommended guide RNA sequence

Time

- 2-4 weeks
- 6-8 weeks

Summary

EmendoBio's platform

Al-based nuclease discovery and engineering platform

Precision, diversity, efficiency and safety superior to conventional CRISPR

Compatible with all commonly used delivery platforms

Strong IP position

Patent families covering all aspects of gene editing

Custom-designed and off-the-shelf nucleases

Available for exclusive or nonexclusive licensing

