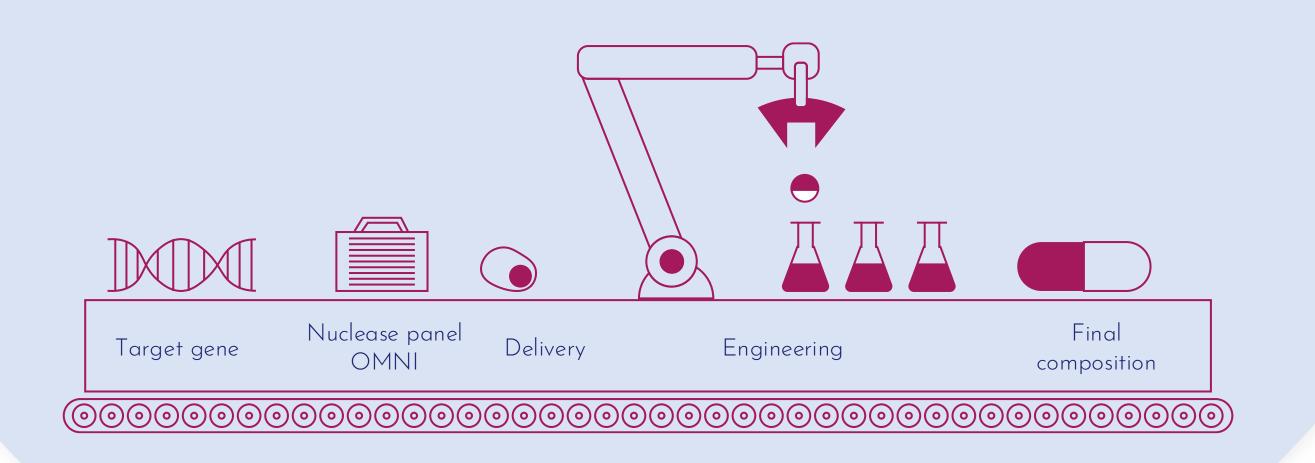


Making any gene targetable

NEXT GENERATION CRISPR

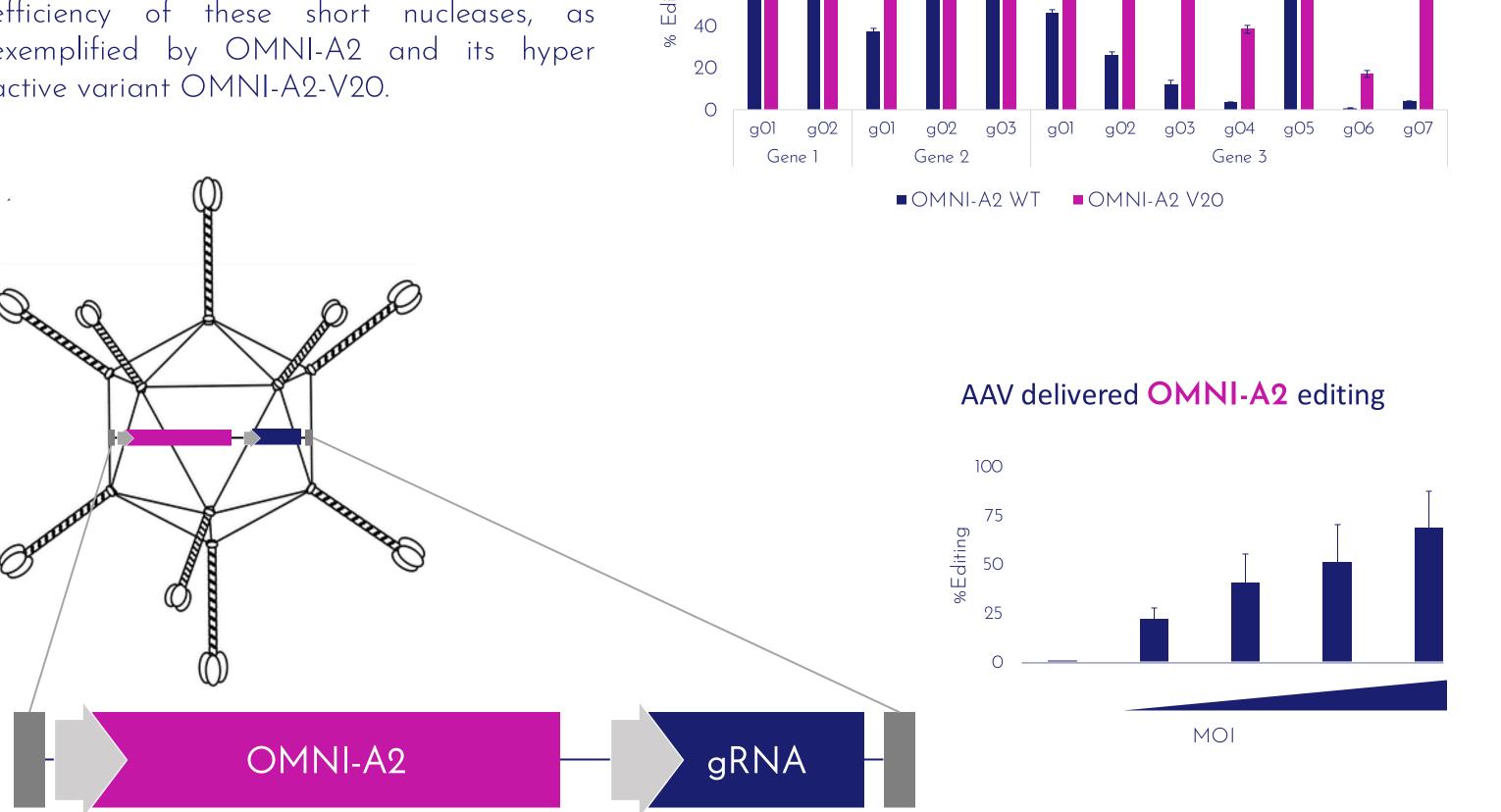

The OMNITM panel of novel engineered nucleases answers key needs in genome editing

Liat Rockah, Ella Segal, Bar Ben Baruch, Milit Marom David, Rafi Emmanuel, Lior Izhar

The OMNITM nuclease panelmaking any gene targetable

Successful gene editing requires developing a carefully optimized. Using this powerful platform, we have generated a composition per target gene and target organ. Access to a variety of panel of novel nucleases OMNITM that are used in nucleases and guides, characterized by high activity and specificity and our own clinical programs, unlocking the full applicable PAM, coupled with the right delivery tool is key. Different potential of genome editing. These Type II nucleases editing objectives require specific nuclease characteristics, such as are diverse in size and compatible with all delivery nuclease size or PAM usage, while exhibiting superb specificity. modalities; PAM usage diversity allows for 86% EmendoBio has developed a dual platform technology combining a genome coverage; and highly specific engineered discovery pipeline and cutting-edge protein-engineering capabilities, variants enable allele specific editing. Together all of supported by extensive computational and machine learning tools.

the above makes any gene targetable.

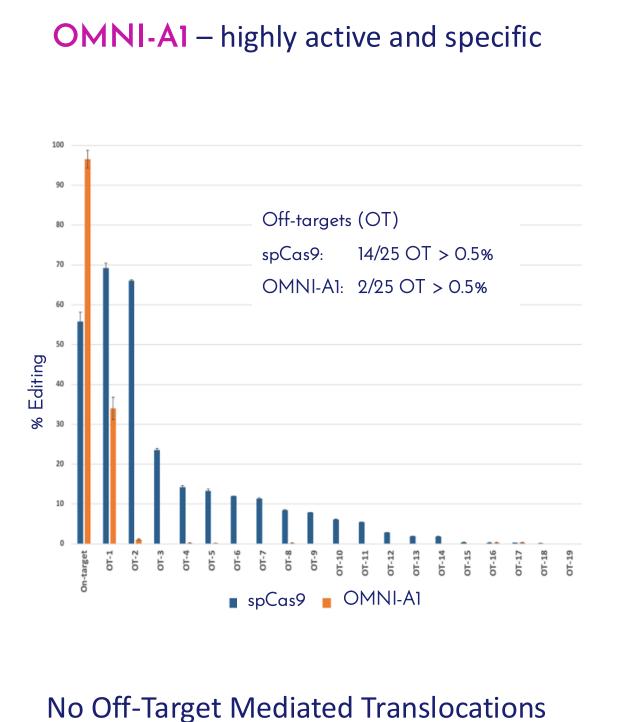


Compatible with all

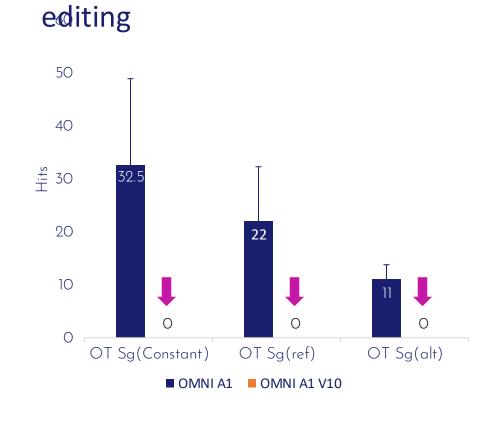
delivery modalities

(~1,050aa) Adeno Associate Virus (AAV) based vectors OMNI-A2 and engineered OMNI-A2-V20 are an important part in the delivery toolbox Highly active, short, AAV packaging compatible novel but have limited payload capacity. Using its dual discovery platform, EmendoBio has identified short CRISPR nucleases compatible with AAV packaging. Protein engineering was used to further improve the editing efficiency of these short nucleases, as exemplified by OMNI-A2 and its hyper active variant OMNI-A2-V20. ■OMNI-A2 WT ■OMNI-A2 V20

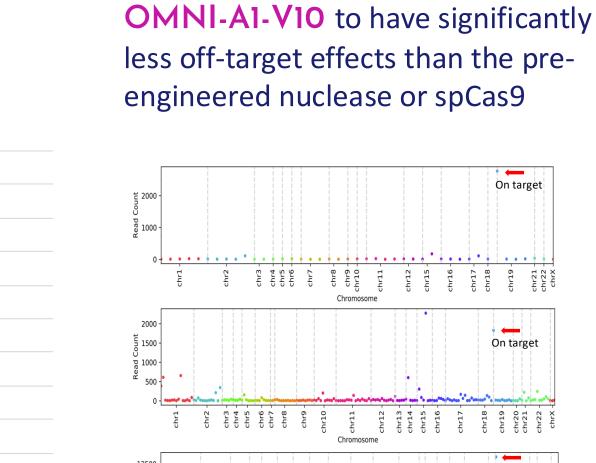
Short AAV-delivery-compatible nucleases - OMNI-A2



Safety


Super-specific and highly active OMNITM nucleases

- No off-target effects
- No translocations
- Allele specific editing


OMNI-A1 was identified using EmendoBio' nuclease discovery platform, exhibiting high editing activity as well as low off target effects. Due to the key safety aspect of off-target effects, OMNI-A1 was optimized using the engineering platform to eliminate off-target editing. CIRCLEseq analysis found OMNI-A1-V10, an engineered variant of OMNI-A1, to have significantly less off-target effects than the wild-type nuclease or spCas9. Importantly, no Off-Target Mediated Translocations (OMTs) were detected using unbiased CASTseq analysis of OMNI-A1-V10 in target cells.

OMNI-A1-V10 - engineered to eliminate off target effects

chr1

chr3

chr3

chr4

chr4

chr6

chr10

chr10

chr11

chr11

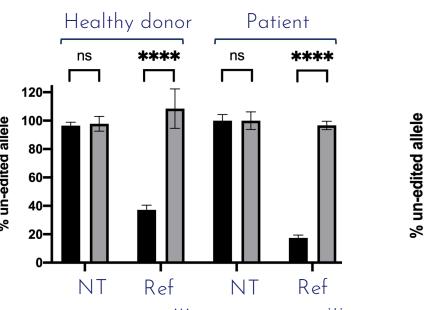
chr11

chr12

chr11

chr12

chr13


chr18

chr18 Christon Chr

chr1 - chr2 - chr3 - chr4 - chr3 - chr6 - chr6 - chr1 - chr2 - chr1 - chr2 - chr1 - chr2 - chr2 - chr1 - chr2 - ch

CIRCLEseq analysis shows

OMNI-A1-V10 allows for fully discriminatory allele specific editing*

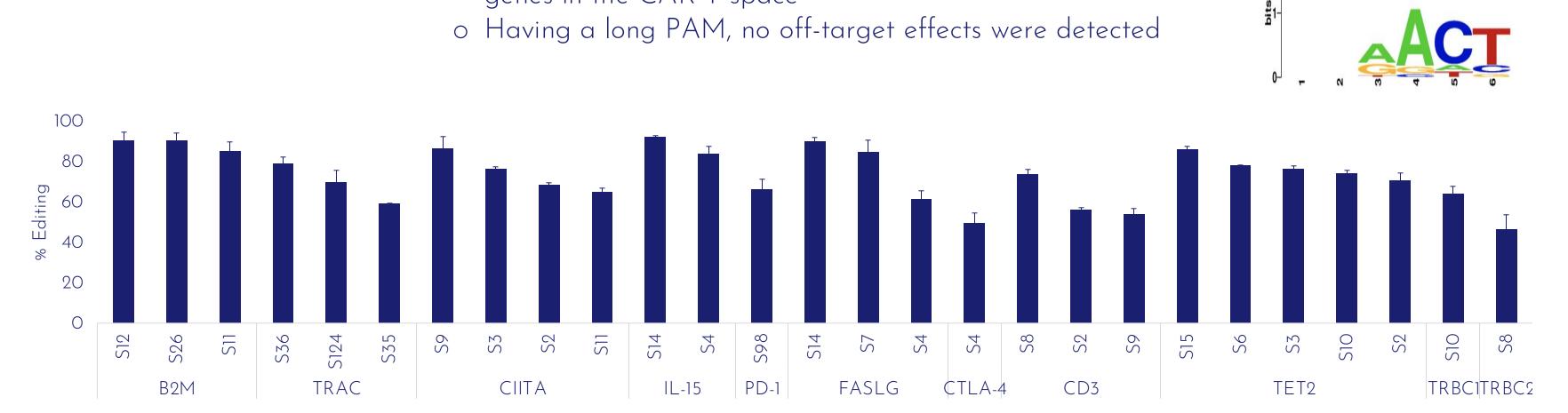
* Mutant allele knockout with novel CRISPR nuclease promotes myelopoiesis in ELANE neutropenia. Sabo et al. Mol Ther Methods Clin Dev. 2022.

Genome accessibility

OMNITM Nuclease panel to overcome PAM Constraints

The diversity of OMNITM nucleases particularly PAM site diversity widens significantly genome accessibility and enables targeting of genomic sites that are not accessible using NGG nucleases. Accumulatively the OMNITM panel covers approximately 86% of the genome, making any gene targetable.

OMNI™	PAM	Length (aa)	MaxEd
OMNI-A2	NGGNNNNN	1062	0.86
OMNI-A7	NNGNRM	1097	0.87
OMNI-A8	NYRRV	1109	0.88
OMNI-A13	NNNNCMA	1091	0.91
OMNI-A31	NNGRV	1054	0.86
			0.01
	ases	1078	0.91
OMNI-A34 Long nucle	ases		
	PAM	1078 Length (aa) 1370	
Long nucle	ases	Length (aa)	MaxEdi
Long nucle OMNI™ OMNI-A1	PAM NGGNNNN	Length (aa) 1370	MaxEdi 0.98
Long nucle OMNI™ OMNI-A1 OMNI-A54	ASES PAM NGGNNNNN NNRNRY	Length (aa) 1370 1091	MaxEdi 0.98 0.85


Major IP issue in the cell therapy space: heavily patented NGG guides

A little recognized intellectual property (IP) limitation is that of patented guide sequences. For many gene targets, for example CAR-T gene targets, multiple patents by various entities cover applicable NGG guide sequences, making them unavailable for companies that desire using CRISPR as their editing tool. Using OMNI non-NGG nucleases and guides overcomes guide IP barriers.

Gene name	# of patent families directed to guide sequences	# of NGG guides left after patent screen	# of guides for non-NGG nuclea selected for Bio' screening
TRAC	56	0/20	15
TRBC1	23	1/20	3
TRBC2	23	1/21	5
CD3e	4	10/79	18
B2M	42	0/33	12
CIITA	9	0/294	35
PD1	51	0/196	29

OMNI-A4: non-NGG PAM nuclease compositions for major targets in the cell therapy and immuno-oncology space

- o Multiple active guides are available for all major target genes in the CAR-T space

Gene knockout using OMNI-A4 results in a dramatic reduction in expression of cell surface proteins TCR

CAR-T ready OMNITM and guide compositions

Target gene	% Editing (by NGS)
B2M	91
CD3	70
CIITA	82
CTLA4	75
FASLG	68
HAVCR2	94
HLA-E	94
PD1	44
TET	88
TRAC	90
CISH	70

We are open to collaboration on the OMNITM nuclease panel and editing capabilities

For further information please contact us

